Math 6261
$$2023-02-10$$
Review:Def. (D) A collection A of subsets of Ω is said to be a π -systemifA, B \in A \Rightarrow A \cap B \in A.(a) A collection d of subsets of Ω is said to be a λ -system if(i) $\Omega \in d$; (ii) If A, B \in d, A \subset B, then $B \land E d$;(iii) If An $\in d$ and An $\uparrow A$, then A $\in d$.Thm (Dynkin's π - λ Thm)Suppose that \mathcal{P} is a π -system and d is a λ -system such that $\mathcal{P} = d$.Than $\mathcal{O}(\mathcal{P}) = d$.Then $\mathcal{O}(\mathcal{P}) = d$.P(X_1 < a_1, ..., X_n < a_n) = $\frac{\pi}{1+1} P(X_1 < a_1)$, (*)Pf. Let A_i be the collection of sets of the form $X_i^{-1}(-\infty, a_i]$, $i = 1, ..., n$ Then A_i is a π -system for each \hat{z} .

By (*), A₁, ..., A_n are independent. So by Thun 2-1,

$$\sigma(s_{1}), ..., \sigma(A_{n})$$
 are independent.
But $\sigma(A_{1}) = \sigma(X_{1})$, so
 $X_{1}, ..., X_{n}$ are independent.
Thus 2-3. Suppose $F_{2,3}$, $|s| \leq n$, $|s| \geq m(1)$ are independent and
let $G_{1} = \sigma(\bigcup_{j=1}^{m(1)} \mathcal{F}_{j,j})$. Then $G_{1}, ..., G_{n}$ are independent.
Pf. Let A_{1} be the collection of sets of the form
 $\prod_{j=1}^{m(1)} A_{1,j}$ with $A_{1,j} \in \mathcal{F}_{1,j}$.
Then A_{1} is a TT-system for each z .
Notice that $A_{1, ..., A_{n}}$ are independent.
Thus 2-4. If $X_{1,3}$, $\tilde{z}=1,...,n$, $(s) \leq m(1)$ are independent and
 $f_{1}: [R^{m(1)} \rightarrow R$ are measurable, then
 $f_{1}(X_{1,1},..., X_{1,m(1)})$ are independent.

pf. Let
$$\overline{J}_{i,j} = \sigma(X_{i,j})$$
 and $\overline{G}_{i} = \sigma(\bigcup_{j=1}^{m(i)} \overline{J}_{i,j})$.
Thus $f_{i}(X_{i,i}, \dots, X_{i,m(i)}) \in \overline{G}_{i}$ (**).
To see (**), it suffices to show that for each $A \in \mathcal{G}(\mathbb{R}^{m(i)})$,
 $(X_{i,i}, \dots, X_{i,m(i)})^{T}A \in \overline{G}_{i}$. (***)
Write
 $\mathcal{T} := \{A \in \mathcal{G}(\mathbb{R}^{m(i)}) : (X_{i,i}, \dots, X_{i,m(i)})^{T}A \in \overline{G}_{i}\}.$
Clearly, \mathcal{T} is a sub s-algebra of $\mathcal{G}(\mathbb{R}^{m(i)})$ and
 \mathcal{T} contains the connection of sets of the form
 $A_{i} \times \dots \times A_{m(i)}$ with $A_{j} \in \mathcal{G}(\mathbb{R})$.
Since this collection generates $\mathcal{G}(\mathbb{R}^{m(i)})$, it follows that
 $\mathcal{T} = \mathcal{G}(\mathbb{R}^{m(i)})$.
which implies $(***)$.

Next we would like to investigate the distribution and expectation of independent r.v.'s.

Thm 2.5. Suppose
$$\chi_{i_1}$$
, ..., χ_n are independent ru's and χ_i has
distribution μ_{i_1} , then $(\chi_{i_1},..,\chi_n)$ has distributive $\mu_{i_1} \dots \mu_n(A)$.
Pf. Write
 $\mathcal{T} = \{ A \in \mathcal{P}(\mathbb{R}^n) : \mathcal{P}((\chi_{i_1},..,\chi_n) \in A) = \mu_{i_1} \dots \mu_n(A) \}.$
Clearly \mathcal{T} is a λ -system Notice that
 $\mathcal{T} = \{ A_{i_1} \dots \times A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \}$
 a π -system
Hence
 $\mathcal{T} = \mathcal{O}(\{ A_{i_1} \dots \times A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots \times A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots \times A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{P}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{O}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n : A_{i_n} \dots A_n \in \mathcal{O}(\mathbb{R}) \})$
 $= \mathcal{O}(\{ A_{i_1} \dots A_n \cap A_n$

Cor. 2.7. Suppose
$$X_{1, \dots, X_{n}}$$
 are independent such that either
(a) $X_{1} \ge 0$ for $\infty \le 1 \le n$ or
(b) $E|X_{1}|<\infty$.
Then $E(X_{1}\cdots X_{n}) = \frac{\pi}{11} EX_{1}$.
Next we consider sums of independent μ .
Then for each $2 \in \mathbb{R}$,
 $P(X + Y \le 2) = \int F(2-y) dG(y)$.
Pf. Set $\Re(x,y) = \Re\{x+y \le 2\}$.
 $P(X + Y \le 2) = E \Re(X, Y)$
 $= \iint \Re\{x+y \le 2\} d\mu(x) d\nu(y)$
 $= \int \mu(-w, z-y] d\nu(y)$.
Remark: $\int \mu(y) dG(y)$ means $\int \mu(y) d\nu(y)$.

Let J1, ..., Jn, ..., be a sequence of Borel probability measures on R.

$$Define = \{ (\omega_1, \dots, \omega_n, \dots) : \omega_i \in \mathbb{R} \}, \quad \text{where} \quad \{N := \{1, 2, \dots\}\}$$

For
$$\omega = (\omega_i)_{i=1}^{\infty} \in \mathbb{R}^{N}$$
, define

$$X_i(\omega) = \omega_i$$

Let
$$\beta(\mathbf{R}^{N})$$
 be the 5-algebra generated by the finite dimensional
sets { $\omega: \omega_i \in B_i$, $|\leq i \leq n$ } with $B_i \in \widehat{\mathcal{P}}(\mathbf{R})$.

Thm (Kolmogrou's extension thm) Let μ_n be prob. measure on $(\mathbb{R}^n, \mathfrak{D}(\mathbb{R}^n)), n=1,2,\cdots$, such that

$$\begin{split} & \left| \mathcal{V}_{n+1} \left(\left(a_{i}, b_{i} \right) \times \cdots \times \left(a_{n}, b_{n} \right) \times \mathbb{R} \right) = \mu_{n} \left(\left(a_{i}, b_{i} \right) \times \cdots \times \left(a_{n}, b_{n} \right) \times \mathbb{R} \right) \right) \\ & \text{Then } \exists \ a \ unique \ prob. measure \ Pon \left(\left(\mathbb{R}^{N}, \ \beta(\mathbb{R}^{N}) \right) \right) \ sud \ then; \\ & P \left(\left(a_{i}, b_{i} \right) \times \cdots \times \left(a_{n}, b_{n} \right] \times \mathbb{R}^{N} \right) = \mu_{n} \left(\left(a_{i}, b_{i} \right) \times \cdots \times \left(a_{n}, b_{n} \right) \right) \\ & \text{Set} \quad \left(\mu_{k} = \left[b_{1} \times \cdots \times b_{n} \right] \right) \ white \\ & P = \frac{\alpha_{1}}{n} \ b_{n} \\ & \text{Then} \quad \chi_{1}(\omega), \cdots, \ \chi_{n}(\omega), \cdots \ \text{are independent} \\ & \text{Then} \quad \chi_{1}(\omega), \cdots, \ \chi_{n}(\omega), \cdots \ \text{are independent} \\ & \text{Set} \quad \left(1 \times a_{n} \times 1 \right) = o \\ & \left[b_{1} + \sum b_{n} + b$$

•
$$Var(cX) = C^{2} Var(X)$$
.
Lemma. Let $p > 0$. Suppose $E[Z_{n}]^{p} \rightarrow 0$ then $Z_{n} \rightarrow 0$ in prob.
 $pf.$ Let $p > 0$. Then by the Chebysheu inequality
 $p\{[Z_{n}| > g\} \leq \frac{E[Z_{n}]^{p}}{g^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
 $p\{[Z_{n}| > g\} \leq \frac{E[Z_{n}]^{p}}{g^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
Thm 29 (L^{2} weak law of large numbers).
Let X_{1}, X_{2}, \cdots , be uncorrelated r.v.'s with $EX_{i} = \mu$ and
 $Var(X_{i}) \leq C < 00$.
Then $\frac{X_{1} + \cdots + X_{n}}{n} \rightarrow \mu$ in prob.
 $pf.$ Set $S_{n} = X_{1} + \cdots + X_{n}$.
Let $p > 0$. Then
 $P([\frac{S_{n}}{n} - \mu] > p] \leq \frac{E(\frac{S_{n}}{n} - \mu)^{2}}{g^{2}}$
 $= \frac{1}{n^{2} \varepsilon^{2}} \cdot Var(X_{1} + \cdots + Var(X_{n}))$
 $= \frac{1}{n^{2} \varepsilon^{2}} \rightarrow 0$ as $n \rightarrow \infty$. 121

§ 2.3 Borel - Cantelli lemmas
Let
$$A_n \in \mathcal{L}_{-, n=1, 2, \cdots}$$

Write
 $\lim_{m \to \infty} A_n = \int_{m=1}^{\infty} \bigcup_{n=n}^{\infty} A_n$
 $= \{\omega: w \in A_n \ i.o.\}$
Thus $P(A_n \ i.o.) = o$
 $Pf. Since \sum_{n=1}^{\infty} P(A_n) < \infty$,
 $\lim_{m \to \infty} \sum_{n=n}^{\infty} P(A_n) = o$
 $\lim_{m \to \infty} \sum_{n=m}^{\infty} P(A_n) = o$
 $So P(\bigcup_{n=m}^{\infty} A_n) \leq \sum_{n=m}^{\infty} P(A_n) \rightarrow o$ as $m \rightarrow \infty$
Hence $P(\lim_{n \to \infty} A_n) \leq P(\bigcup_{n=m}^{\infty} A_n) \rightarrow o$ as $m \rightarrow \infty$.
(2)

As another application of the Borel-Cantelli Lemma, we have the following version of strong law of large numbers. This 2.11. Let X_1, X_2, \cdots , be i.i.d. with $EX_j = \mu$ and $EX_j^4 < \infty$. Then $\lim_{n \to \infty} \frac{\chi_1 + \dots + \chi_n}{n} = \mu$ a.s.